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Cluster analysis as unsupervised Learning

Unsupervised learning (as opposed to supervised learning) seeks to
identify structures in the usually high-dimensional data X without the
help of a known label Y.

Cluster analysis focuses on informative partition of observations into
groups.

Cluster analysis may lead to simpler and sometimes more meaningful
representation of the data.
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What is a cluster?

Objects within each cluster are closer to one another than objects in
different clusters.

//

Internal cohesion: homogeneity.

External isolation: separation.
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Similarity, dissimilarity and distance

Cluster analysis starts with defining a quantitative measure of
proximity between each pair of objects (observations) x; and x;. It can
be a similarity measure s;; (the larger the closer) or a dissimilarity
measure §; (the smaller the closer).

Proximity measures can be directly given or calculated from the data.

When a dissimilarity measure fulfills the metric inequality J;; + J,, =
§;m for all (i, j, m) and §;; =o, it is a distance measure d;;.

Not all metric distances are Euclidean.
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Proximity measures for continuous data

Dissimilarity measures between
continuous data points are
usually general distance
measures or correlation
measures.

Variables can be weighted by a
nonnegative w,.

Pearson correlation and angular
separation are also metric.

Measure Formula
LI

D1: Buclidean  d; = Z wi (X — xi)

distance k=1

»

D2: City block  dj; = Zu‘k‘_\',‘f\ - j,“

distance k=1

. Ur

D3: Minkowski  dy = (Z Wh| X — u") (r=1)

distance k=1
D4: Canberra 0 for xi = xje =0

distance dij = 2

(Lance and v Z“"‘ ‘_\',-,; — Xgi ‘/{\\M + |.\:,-,g D for xu # 0 orxy #0

Williams, 1966) k=t
D5: Pearson 8= (l—q‘)g)/Z with

correlation

¢ :Z“’A(-\'u.*-i}")( A-‘j')/ |:Z e(Xa—X) Z (2 — )
i = Iz
P »
where ‘-:Zu-';\..\'“g Zwk
=1 k=1

D6: Angular o = (lfq‘)y)/.dwﬂl

separation

Xi X

Cluster Analysis chapter 3
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Proximity measures for binary data

Individual 1
Outcome 1 0 Total
Individual j 1 a b a+b
0 C d c+d
Total a+c b+ d p=a+b+c+d
Measure Formula

S1: Matching coefficient sj=(a+d)/(a+b+c+d)

S2: Jaccard coefficient (Jaccard, 1908) si=afla+b+c)
S3: Rogers and Tanimoto (1960) sj = (a+d)/la+2(b+c)+d|
S4: Sneath and Sokal (1973) sj =afla+2(b+c)]
|
S5: Gower and Legendre (1986) si = (a+ n’}/ [a +50b+c)+ rf]
1
S6: Gower and Legendre (1986) 5 = f!/ |:{J'+ ;(b + c}]

Cluster Analysis chapter 3
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Proximity measures for mixed-type data

Gower’s general similarity measure:
p p
S5 = 2 WicSik / 2 W
k=1 k=1

For categorical variables, if the two objects have the same value for
variable k, s;;=1, otherwise s =0.
1-|x;-X:| /R,, where R, is the range of the kth

For continuous variables, s X

variable.
The weights w can be very flexible to deal with missing values or specific
requirements.

ijk—
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Clustering algorithms

Hierarchical clustering
Optimization clustering
Model-based clustering
Density-based clustering
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Hierarchical clustering

Partition the data in a series of steps
Agglomerative and divisive methods
Produces a tree-shaped dendrogram
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Agglomerative hierarchical clusterin
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ITSL chapter 10
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Distance between clusters: linkage

Single linkage (nearest neighbor):
/] d23
Complete linkage (furthest neighbor):
d
‘ 15

7 — Average linkage (mean):

(dy+d, +d. +d, +d,+d,)/6

Centroid linkage:
Calculated from original data X
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Linkage choice affects clustering results
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“Centroid linkage may lead to inversion

centrold linkage
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~ Summary of different linkage options

Distance between
clusters defined as:

Usually
used with:

Remarks

Method Alternative
name”
Single linkage Nearest
Sneath (1957) neighbour
Complete linkage Furthest
Sorensen (1948) neighbour
(Group) Average UPGMA
linkage Sokal and
Michener (1958)
Centroid linkage UPGMC
Sokal and
Michener (1958)
Weighted average WPGMA
linkage McQuitty
(1966)
Median linkage WPGMC

Gower (1967)

Ward’s method
Ward (1963)

Minimum sum
of squares

Similarity or
distance

Minimum distance between pair of
objects, one in one cluster, one in the
other

Maximum distance between pair of
objects, one in one cluster, one in the
other

Average distance between pair of

Similarity or
distance

Similarity or

distance objects, one in one cluster, one in the
other
Distance Squared Euclidean distance
(requires between mean vectors (centroids)
raw data)

Similarity or Average distance between pair of

distance objects, one in one cluster, one in the
other
Distance Squared Euclidean distance
(requires between weighted centroids
raw data)
Distance Increase in sum of squares within
(requires clusters, after fusion, summed

raw data) over all variables

Tends to produce unbalanced and straggly clusters
(“chaining’), especially in large data sets. Does
not take account of cluster structure.

Tends to find compact clusters with equal
diameters (maximum distance between objects).
Does not take account of cluster structure.

Tends to join clusters with small variances.
Intermediate between single and complete
linkage. Takes account of cluster structure.
Relatively robust.

Assumes points can be represented in Euclidean
space (for geometrical interpretation). The more
numerous of the two groups clustered dominates
the merged cluster. Subject to reversals.

As for UPGMA, but points in small clusters
weighted more highly than points in large
clusters (useful if cluster sizes are likely to be
uneven).

Assumes points can be represented in Euclidean
space for geometrical interpretation. New group
is intermediate in position between merged
groups. Subject to reversals.

Assumes points can be represented in Euclidean
space for geometrical interpretation. Tends to
find same-size, spherical clusters. Sensitive to
outliers.

“U =unweighted; W =weighted; PG = pair group; A =average; C = centroid.

Cluster Analysis chapter 4
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Summary of hierarchical clustering

Performer has to choose proximity measure, clustering methods and
the number of clusters (k).

Being able to show hierarchy structures.
Unsatisfactory grouping cannot be undone in later steps.
May not perform well for large datasets.
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Optimization clustering

With any partition of the n data points into g groups, there could be an

index c(n, g) that measures the quality of the partition, which can be
optimized.

Usually c(n, g) is related to within-group homogeneity or between-
group separation.

Produces the ‘best’ group assignment, but no hierarchical structure.
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Optimization clustering

In theory, one could find the ‘best’ clustering solution by going through
all possible C and find the smallest within cluster scatter W(C) .

In reality the number of possible C grows rapidly with increasing n, and
this direct approach is not feasible.

The best C will have to be approximated by some iterative algorithm.
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K-means clustering

If all p variables are quantitative and the dissimilarity is squared
Euclidean distance:

p 2
d(X;,X;) = > (X = Xjm)’ :Hxi _XJ'H
m=1

Then W(C) is the sum of distance between each member of the cluster
and the mean vector of that cluster:

W(C) == Z ZHX 1 =30 S

—1C| g=1 C| g
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K-means clustering

W(C) can be iteratively improved by the
following algorithm, but may converge on a
local minimum. Different random initial
assignments may produce different results.

Algorithm 10.1 K-Means Clustering

1. Randomly assign a number, from 1 to K, to each of the observations.

These serve as initial cluster assignments for the observations.
2. Tterate until the cluster assignments stop changing:

(a) For each of the K clusters, compute the cluster centroid. The
kth cluster centroid is the vector of the p feature means for the
observations in the kth cluster.

(b) Assign cach observation to the cluster whose centroid is closest
(where closest is defined using Euclidean distance).

Data Step 1 Iteration 1, Step 2a
L . .
Ll e ® L [ ] L]
.‘-:l'.".‘ .’ ‘.3 'Q.o .‘ 'oj 'Q.o
* e . -" F . o o
1) -. M) -' : e -' :
. * L] L ]
« e .« °® .
o B . T - T
e gl o pe %05, " Tope Sa %
o2 Be, * oo Se *
"o W W i
& oo gee $ e o $ otme oo
. l} . o % 2

Iteration 1, Step 2b

Iteration 2, Step 2a

Final Results

ITSL chapter 10



PGt - — ——

K-medoids

In the k-means algorithm, the problem of minimizing within group
scatter is transformed into minimizing the distance between each
member and a cluster center (in this case the centroid).

This approach can be extended to other dissimilarity measure and
other choice of cluster centers.

K-medoids is a robust extension of the K-means, in which a
representative data point is chosen as the cluster center. Optimization
can be based directly on dissimilarity matrix.



K-medoids

Algorithm 14.2 K -medoids Clustering.

L.

3.

For a given cluster assignment C' find the observation in the cluster
minimizing total distance to other points in that cluster:

iy = argmin Y D(w;, ). (14.35)
{1:C(2)=k} C(iN=k

Then my, = z;;, k = 1,2,... K are the current estimates of the
cluster centers.

Given a current set of cluster centers {m,...,mk }, minimize the to-
tal error by assigning each observation to the closest (current) cluster

center:
C(7) = argmin D(z;, my). (14.36)
1<k<K

Iterate steps 1 and 2 until the assignments do not change.

ESL chapter 14
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Summary of optimization clustering

Search for an optimization of a clustering criterion, which depends on
dissimilarity and within cluster homogeneity or between cluster
separation.

Methods like K-means and K-medoids are approximations, no
guarantee of finding the global maximum.

Only produces cluster assignments.
Initial values of cluster centers affect final results.
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Model-based clustering

A parametric solution (probability density estimation).
Assume that data points are sampled from a family of probability
density functions of the form:

f(x,p.0) =3 p, T, (x.6)

Cluster assignment is based on the estimated posterior probability:
ﬁg fg (Xi ) 0)
f (i, p.0)

Parameters are estimated by maximum likelihood or Bayesian
methods.

P(cluster g | x, )=
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Gaussian mixture models example

log Density Perspective Plot

Classification
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How to determine k?

Sometimes the number of clusters k is known a priori.
Otherwise, there is no universal solution, but heuristics are available.

There are a lot of indices that may help evaluating the ‘quality’ of
clustering with different k (the NbClust package in R includes 30 of

them...).
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Silhouette analysis

Silhouette measures the tightness and separation of the clustering
solution.

Silhouette plot of K-means solution (k=3) average silhouette width n=50
n=120 3 clusters C;
jinave.q s @
a(|):d(|,A) 1: 21| 088
b(i)=mind(i,C) :
C=A

- b(i)-afi) S e N
max{a(i),b(i J} S g

3: 40| 0.75

0.7

0.6

0.5

T T T T
0.0 0.2 04 0.6 0.8 1.0 1 2 3 4 5
Silhouette width s;

Average silhouette width : 0.77
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Determining k for finite mixture model

Equivalent to a model selection

problem.

Akaike’s information criterion

(AIC) or Bayesian information

criterion (BIC) are usually used. s | \

AIC and BIC are penalized g

likelihood. ) e
AIC=-2LL(x,0)+2p %
BIC =—2LL(x,0)+ pIn(n) L el
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The Gap statistic

Normalize the within cluster
scatter criterion over a reference

Gap statistic of K-means solutions

0.5

distribution. %\
W, = ii Zd S / \\%____,ffk
e 74 gt § %

Gap, (k) = E {log(W, )}—log(W,)

Reference distribution obtained
by Monte Carlo sampling of a
uniform distribution over a box

Gapy,
0.2 0.3
| |
.'—\

0.1

0.0

aligned with the principle N
component of the data. k
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~ Density-based clustering

Separation criterion tends to identify convex clusters
Certain scenarios favor non-convex shaped clustering
Chaining effect isn’t always a bad thing!

k-means hierarchical clustering with single linkage
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Density-based clustering

Density-based clustering can be imaged as cutting through the
probability density function.

Points with low density are not assigned to any clusters.

..........

Kriegel et al. (2011). Density-based clustering. WIREs Data Mining and Knowledge Discovery
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~—Density-based spatial clustering of applications
with noise (DBSCAN)

Parameters to determine densities around each
points: € and minPts

Core, border and noise points P c
Clustering based on density-reachability W

ALGORITHM 2: Abstract DBSCAN Algorithm

1 Compute neighbors of each point and identify core points // Identify core points
2 Join neighboring core points into clusters // Assign core points

3 foreach non-core point do

4 Add to a neighboring core point if possible // Assign border points
5 Otherwise, add to noise // Assign noise points

Schubert et al. (2015). DBSCAN revisited: why and how you should (still) use DBSCAN. ACM Transactions on Database Systems.
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: . | can be heuristically determined as
e ﬂ,-/ i /,J some k > p+1, where p is the
N " e dimensionality of the data.
A L .
T T o ‘YT oo oo oo e can then be determined from the
elbow in the kth-nearest neighbor
eps=0.3, minPts=3 eaps=1.5, minPts=3 .
distance plot
e &
i TR P

Hahsler et al. dbscan: Fast Density-based Clustering with R. https://cran.r-project.org/web/packages/dbscan/vignettes/dbscan.pdf
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General remarks

Proximity measure has to be defined with caution.

Choice of clustering methods depends on proximity (e.g., K-means
only for squared Euclidean).

Determining the number of k is a hard problem, but can be guided by
heuristics.

Density-based clustering may help identify non-convex clusters, but
one still have to be careful about parameter selection.
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Recommended readings

An Introduction to Statistical Learning: With Applications in R. James G,
Witten D, Hastie T, Tibshirani R. Springer: 2013. Chapter 10.

The Elements of Statistical Learning: Data Mining, Inference, and Prediction.
Hastie T, Tibshirani R, Friedman J. Springer: 2011. Chapter 14.

Cluster analysis (5ed). Everitt BS, Landau S, Leese M, Stahl D. Wiley: 2011.
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